

Cambridge IGCSE™

 CANDIDATE
 NAME

--	--	--	--	--

 CENTRE
 NUMBER

--	--	--	--	--

 CANDIDATE
 NUMBER

--	--	--	--

CHEMISTRY
0620/52

Paper 5 Practical Test

May/June 2025
1 hour 15 minutes

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

 This document has **12** pages. Any blank pages are indicated.

- 1 You are going to investigate the temperature change when anhydrous lithium chloride dissolves in water.

Read all of the instructions carefully before starting the experiments.

Instructions

You are going to do five experiments.

Experiment 1

- Use the 50 cm^3 measuring cylinder to pour 40 cm^3 of distilled water into the 100 cm^3 beaker.
- Use the thermometer to measure the initial temperature of the water. Record this initial temperature in Table 1.1.
- Add a 2.0 g sample of anhydrous lithium chloride to the water in the beaker.
- Continually stir the mixture in the beaker using the thermometer.
- Measure the highest temperature reached by the mixture in the beaker. Record this highest temperature of the mixture in Table 1.1.
- Empty the beaker and rinse the beaker with distilled water.

Experiment 2

- Repeat Experiment 1 using 30 cm^3 of distilled water instead of 40 cm^3 .

Experiment 3

- Repeat Experiment 1 using 25 cm^3 of distilled water instead of 40 cm^3 .

Experiment 4

- Repeat Experiment 1 using 20 cm^3 of distilled water instead of 40 cm^3 .

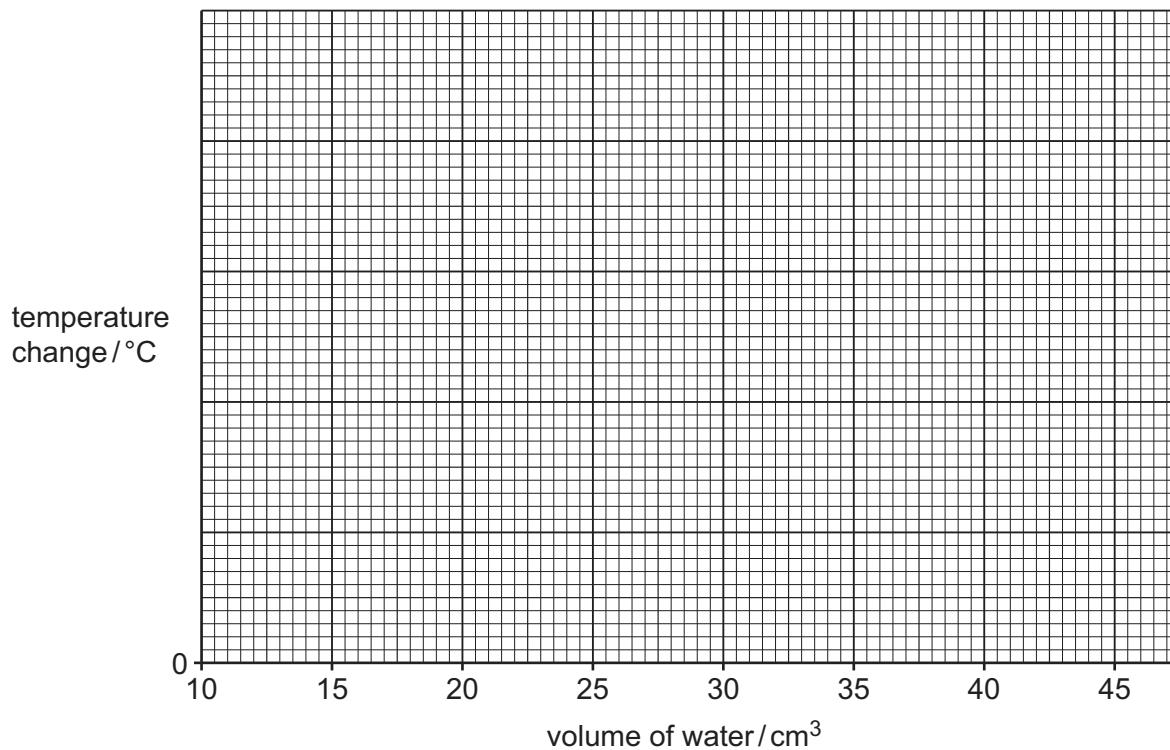
Experiment 5

- Repeat Experiment 1 using 15 cm^3 of distilled water instead of 40 cm^3 .

(a) Complete Table 1.1.

Table 1.1

experiment	mass of anhydrous lithium chloride /g	volume of water/ cm^3	initial temperature / $^\circ\text{C}$	highest temperature reached/ $^\circ\text{C}$	temperature change/ $^\circ\text{C}$
1	2.0	40			
2		30			
3		25			
4		20			
5		15			


[5]

- (b) Complete a suitable scale on the y -axis and plot your results from Experiments 1 to 5 on Fig. 1.1.

Draw a line of best fit.

Fig. 1.1

[4]

- (c) Extrapolate the line on your graph in Fig. 1.1 to deduce the temperature change when Experiment 1 is repeated with 45 cm^3 of water instead of 40 cm^3 of water.

Show clearly on Fig. 1.1 how you worked out your answer.

temperature change = [3]

- (d) The energy, in J, given out when 2.0 g of anhydrous lithium chloride dissolves is calculated using the equation shown.

$$\text{energy given out} = \text{temperature change} \times 4.2 \times \text{volume of water}$$

Calculate the energy given out when 2.0 g of anhydrous lithium chloride dissolves in Experiment 5.

$$\text{energy given out} = \text{J} [1]$$

- (e) Estimate the temperature change when Experiment 1 is repeated using 4.0 g of anhydrous lithium chloride instead of 2.0 g.

Give a reason for your answer.

temperature change

reason

.....

[2]

- (f) Explain why the results obtained would be more accurate if the beaker used in each experiment was replaced by a polystyrene cup.

.....

.....

..... [2]

- (g) (i) Explain why using a burette instead of a measuring cylinder is an improvement.

.....

..... [1]

- (ii) Explain why standing the beaker in a water-bath is **not** an improvement.

.....

[1]

[Total: 19]

- 2 You are provided with two solids: solid **J** and solid **K**.

Do the following tests on solid **J** and solid **K**. Record all of your observations at each stage.

Tests on solid J

Add about 5 cm depth of distilled water to the boiling tube containing solid **J**. Replace the stopper in the boiling tube and shake the boiling tube to dissolve solid **J** and form solution **J**. Divide solution **J** into four approximately equal portions in four test-tubes.

- (a) To the first portion of solution **J**, add aqueous sodium hydroxide dropwise and then in excess.

Record your observations.

dropwise

in excess

[2]

- (b) To the second portion of solution **J**, add the sample of aqueous chlorine followed by the sample of starch solution.

Record your observations.

.....
.....
.....
.....

[2]

- (c) To the third portion of solution **J**, add about 1 cm depth of dilute nitric acid followed by a few drops of aqueous silver nitrate.

Record your observations.

.....
.....

[1]

- (d) To the fourth portion of solution **J**, add about 1 cm depth of aqueous sodium carbonate.

Record your observations.

.....
.....

[1]

- (e) Identify solid **J**.

.....
.....

[2]

Tests on solid K

- (f) Carry out a flame test on solid K.

Record your observations.

..... [1]

- (g) Put the remaining solid K into a boiling tube. Add about 3 cm depth of distilled water to the boiling tube. Put a stopper in the boiling tube and shake the boiling tube to dissolve solid K and form solution K. Divide solution K into two approximately equal portions in two boiling tubes.

- (i) To the first portion of solution K in a boiling tube, add about 1 cm depth of aqueous sodium hydroxide. Warm the mixture and hold damp red litmus paper at the mouth of the boiling tube.

Record your observations.

.....

..... [1]

- (ii) State the conclusion that can be made from the result of the test in (g)(i).

..... [1]

- (iii) To the second portion of solution K in a boiling tube, add about 1 cm depth of aqueous sodium hydroxide and a piece of aluminium foil. Warm the mixture and test any gas given off.

Record your observations.

.....

..... [2]

- (h) Identify solid K.

.....

[Total: 15]

- 3 Magnesium sulfate is a salt. Magnesium sulfate is soluble in water.

The solubility of a salt is the mass of the salt, in g, that dissolves in 100cm^3 of water at a specified temperature.

Plan an investigation to determine the solubility of magnesium sulfate in water at 50 °C. Your plan must include how the solubility of magnesium sulfate, in g per 100 cm³ of water, can be found.

You are provided with solid magnesium sulfate, distilled water and common laboratory apparatus.

* 0000800000008 *

8

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

* 0000800000009 *

9

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

0620/52/M/J/25

© UCLES 2025

* 0000800000010 *

10

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

Notes for use in qualitative analysis

Tests for anions

anion	test	test result
carbonate, CO_3^{2-}	add dilute acid, then test for carbon dioxide gas	effervescence, carbon dioxide produced
chloride, Cl^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
bromide, Br^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt.
iodide, I^- [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate, NO_3^- [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate, SO_4^{2-} [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.
sulfite, SO_3^{2-}	add a small volume of acidified aqueous potassium manganate(VII)	the acidified aqueous potassium manganate(VII) changes colour from purple to colourless

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium, Al^{3+}	white ppt., soluble in excess, giving a colourless solution	white ppt., insoluble in excess
ammonium, NH_4^+	ammonia produced on warming	—
calcium, Ca^{2+}	white ppt., insoluble in excess	no ppt. or very slight white ppt.
chromium(III), Cr^{3+}	green ppt., soluble in excess	green ppt., insoluble in excess
copper(II), Cu^{2+}	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II), Fe^{2+}	green ppt., insoluble in excess, ppt. turns brown near surface on standing	green ppt., insoluble in excess, ppt. turns brown near surface on standing
iron(III), Fe^{3+}	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc, Zn^{2+}	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test result
ammonia, NH_3	turns damp red litmus paper blue
carbon dioxide, CO_2	turns limewater milky
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H_2	'pops' with a lighted splint
oxygen, O_2	relights a glowing splint
sulfur dioxide, SO_2	turns acidified aqueous potassium manganate(VII) from purple to colourless

Flame tests for metal ions

metal ion	flame colour
lithium, Li^+	red
sodium, Na^+	yellow
potassium, K^+	lilac
calcium, Ca^{2+}	orange-red
barium, Ba^{2+}	light green
copper(II), Cu^{2+}	blue-green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

